Большая советская энциклопедия

Земной магнетизм

Земной магнетизм, геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменения во времени геомагнитного поля, а также связанные с ним геофизические процессы в Земле и верхней атмосфере.

В каждой точке пространства геомагнитное поле характеризуется вектором напряжённости Т, величина и направление которого определяются 3 составляющими X, Y, Z (северной, восточной и вертикальной) в прямоугольной системе координат (рис. 1) или 3 элементами З. м.: горизонтальной составляющей напряжённости Н, склонением магнитным D (угол между Ни плоскостью географического меридиана) и наклонением магнитным I (угол между Т и плоскостью горизонта).

З. м. обусловлен действием постоянных источников, расположенных внутри Земли и испытывающих лишь медленные вековые изменения (вариации), и внешних (переменных) источников, расположенных в магнитосфере Земли и ионосфере. Соответственно различают основное (главное, ~99%) и переменное (~1%) геомагнитные поля.

Основное (постоянное) геомагнитное поле. Для изучения пространственного распределения основного геомагнитного поля измеренные в разных местах значения Н, D, I наносят на карты (магнитные карты) и соединяют линиями точки равных значений элементов. Такие линии называют соответственно изодинамами, изогонами, изоклинами. Линия (изоклина) I = 0, т. е. магнитный экватор, не совпадает с географическим экватором. С увеличением широты значение I возрастает до 90? в магнитных полюсах. Полная напряжённость Т (рис. 2) от экватора к полюсу растет с 33,4 до 55,7 а/м (от 0,42 до 0,70 э). Координаты северного магнитного полюса на 1970: долгота 101,5? з. д., широта 75,7? с. ш.; южного магнитного полюса: долгота 140,3? в. д., широта 65,5? ю. ш. Сложную картину распределения геомагнитного поля в первом приближении можно представить полем диполя (эксцентричного, со смещением от центра Земли приблизительно на 436 км) или однородного намагниченного шара, магнитный момент которого направлен под углом 11,5? к оси вращения Земли. Полюсы геомагнитные (полюсы однородно намагниченного шара) и полюсы магнитные задают соответственно систему геомагнитных координат (широта геомагнитная, меридиан геомагнитный, экватор геомагнитный) и магнитных координат (широта магнитная, меридиан магнитный). Отклонения действительного распределения геомагнитного поля от дипольного (нормального) называют магнитными аномалиями. В зависимости от интенсивности и величины занимаемой площади различают мировые аномалии глубинного происхождения, например Восточно-Сибирскую, Бразильскую и др., а также аномалии региональные и локальные. Последние могут быть вызваны, например, неравномерным распределением в земной коре ферромагнитных минералов. Влияние мировых аномалий сказывается до высот ~ 0,5R3 над поверхностью Земли (R3 - радиус Земли). Основное геомагнитное поле имеет дипольный характер до высот ~3R3.
Оно испытывает вековые вариации, неодинаковые на всём земном шаре. В местах наиболее интенсивного векового хода вариации достигают 150g в год (1g= 10-5э). Наблюдается также систематический дрейф магнитных аномалий к западу со скоростью около 0,2?в год и изменение величины и направления магнитного момента Земли со скоростью ~20g в год. Из-за вековых вариаций и недостаточной изученности геомагнитного поля на больших пространствах (океанах и полярных областях) возникает необходимость заново составлять магнитные карты. С этой целью проводятся мировые магнитные съёмки на суше, в океанах (на немагнитных судах), в воздушном пространстве (аэромагнитная съёмка) и в космическом пространстве (при помощи искусственных спутников Земли). Для измерений применяют: компас магнитный, теодолит магнитный, магнитные весы, инклинатор, магнитометр, аэромагнитометр и др. приборы. Изучение З. м. и составление карт всех его элементов играет важную роль для морской и воздушной навигации, в геодезии, маркшейдерском деле.
Изучение геомагнитного поля прошлых эпох производится по остаточной намагниченности горных пород (см. Палеомагнетизм), а для исторического периода - по намагниченности изделий из обожжённой глины (кирпичи, керамическая посуда и т.д.). Палеомагнитные исследования показывают, что направление основного магнитного поля Земли в прошлом многократно изменялось на противоположное. Последнее такое изменение имело место около 0,7 млн. лет назад.
? А. Д. Шевнин.Происхождение основного геомагнитного поля. Для объяснения происхождения основного геомагнитного поля выдвигалось много различных гипотез, в том числе даже гипотезы о существовании фундаментального закона природы, согласно которому всякое вращающееся тело обладает магнитным моментом. Делались попытки объяснить основное геомагнитное поле присутствием ферромагнитных материалов в коре Земли или в её ядре; движением электрических зарядов, которые, участвуя в суточном вращении Земли, создают электрический ток; наличием в ядре Земли токов, вызываемых термоэлектродвижущей силой на границе ядра и мантии и т.д., и, наконец, действием так называемого гидромагнитного динамо в жидком металлическом ядре Земли. Современные данные о вековых вариациях и многократных изменениях полярности геомагнитного поля удовлетворительно объясняются только гипотезой о гидромагнитном динамо (ГД). Согласно этой гипотезе, в электропроводящем жидком ядре Земли могут происходить достаточно сложные и интенсивные движения, приводящие к самовозбуждению магнитного поля, аналогично тому, как происходит генерация тока и магнитного поля в динамо-машине с самовозбуждением. Действие ГД основано на электромагнитной индукции в движущейся среде, которая в своём движении пересекает силовые линии магнитного поля.
Исследования ГД опираются на магнитную гидродинамику. Если считать скорость движения вещества в жидком ядре Земли заданной, то можно доказать принципиальную возможность генерации магнитного поля при движениях различного вида, как стационарных, так и нестационарных, регулярных и турбулентных. Усреднённое магнитное поле в ядре можно представить в виде суммы двух составляющих - тороидального поля Вj и поля Вр, силовые линии которого лежат в меридиональных плоскостях (рис. 3). Силовые линии тороидального магнитного поля Вj замыкаются внутри земного ядра и не выходят наружу. Согласно наиболее распространённой схеме земного ГД, поле Bj в сотни раз сильнее, чем проникающее из ядра наружу поле Вр, имеющее преимущественно дипольный вид. Неоднородное вращение электропроводящей жидкости в ядре Земли деформирует силовые линии поля Вр и образует из них силовые линии поля В (. В свою очередь, поле Вр генерируется благодаря индукционному взаимодействию движущейся сложным образом проводящей жидкости с полем Вj. Для обеспечения генерации поля Вр из Вj движения жидкости не должны быть осесимметричными. В остальном, как показывает кинетическая теория ГД, движения могут быть весьма разнообразными. Движения проводящей жидкости создают в процессе генерации, кроме поля Вр, также др. медленно изменяющиеся поля, которые, проникая из ядра наружу, вызывают вековые вариации основного геомагнитного поля.
Общая теория ГД, исследующая и генерацию поля, и "двигатель" земного ГД, т. е. происхождение движений, находится ещё в начальной стадии развития, и в ней ещё многое гипотетично. В качестве причин, вызывающих движения, выдвигаются архимедовы силы, обусловленные небольшими неоднородностями плотности в ядре, и силы инерции.
Первые могут быть связаны либо с выделением тепла в ядре и тепловым расширением жидкости (термическая конвекция), либо с неоднородностью состава ядра вследствие выделения примесей на его границах. Вторые могут вызываться ускорением, обусловленным прецессией земной оси. Близость геомагнитного поля к полю диполя с осью, почти параллельной оси вращения Земли, указывает на тесную связь между вращением Земли и происхождением З. м. Вращение создаёт Кориолиса силу, которая может играть существенную роль в механизме ГД Земли. Зависимость величины геомагнитного поля от интенсивности движения вещества в земном ядре сложна и изучена ещё недостаточно. Согласно палеомагнитным исследованиям, величина геомагнитного поля испытывает колебания, но в среднем, по порядку величины, она сохраняется неизменной в течение длительного времени - порядка сотен млн. лет.
Функционирование ГД Земли связано со многими процессами в ядре и в мантии Земли, поэтому изучение основного геомагнитного поля и земного ГД является существенной частью всего комплекса геофизических исследований внутреннего строения и развития Земли.
? С. И. Брагинский.Переменное геомагнитное поле. Измерения, выполненные на спутниках и ракетах, показали, что взаимодействие плазмы солнечного ветра с геомагнитным полем ведёт к нарушению дипольной структуры поля с расстояния ~3от центра Земли. Солнечный ветер локализует геомагнитное поле в ограниченном объёме околоземного пространства - магнитосфере Земли, при этом на границе магнитосферы динамическое давление солнечного ветра уравновешивается давлением магнитного поля Земли. Солнечный ветер сжимает земное магнитное поле с дневной стороны и уносит геомагнитные силовые линии полярных областей на ночную сторону, образуя вблизи плоскости эклиптики магнитный хвост Земли протяжённостью не менее 5 млн. км (см. рис. в статьях Земля и Магнитосфера Земли). Приблизительно дипольная область поля с замкнутыми силовыми линиями (внутренняя магнитосфера) является магнитной ловушкой заряженных частиц околоземной плазмы (см. Радиационные пояса Земли).
Обтекание магнитосферы плазмой солнечного ветра с переменной плотностью и скоростью заряженных частиц, а также прорыв частиц в магнитосферу приводят к изменению интенсивности систем электрических токов в магнитосфере и ионосфере Земли. Токовые системы в свою очередь вызывают в околоземном космическом пространстве и на поверхности Земли колебания геомагнитного поля в широком диапазоне частот (от 10-5 до 102 гц) и амплитуд (от 10-3 до 10-7 э).Фотографическая регистрация непрерывных изменений геомагнитного поля осуществляется в магнитных обсерваториях при помощи магнитографов. В спокойное время в низких и средних широтах наблюдаются периодические солнечно-суточные и лунно-суточные вариации магнитные самплитудами 30-70g и 1-5g соответственно. Другие наблюдаемые неправильные колебания поля различной формы и амплитуды называют магнитными возмущениями, среди которых выделяют несколько типов магнитных вариаций.
Магнитные возмущения, охватывающие всю Землю и продолжающиеся от одного (рис. 4) до нескольких дней, называются мировыми магнитными бурями, во время которых амплитуда отдельных составляющих может превзойти 1000g. Магнитная буря - одно из проявлений сильных возмущений магнитосферы, возникающих при изменении параметров солнечного ветра, особенно скорости его частиц и нормальной составляющей межпланетного магнитного поля относительно плоскости эклиптики. Сильные возмущения магнитосферы сопровождаются появлением в верхней атмосфере Земли полярных сияний, ионосферных возмущений, рентгеновского и низкочастотного излучений.
Практические применения явлений З. м. Под действием геомагнитного поля магнитная стрелка располагается в плоскости магнитного меридиана. Это явление с древнейших времён используется для ориентирования на местности, прокладывания курса судов в открытом море, в геодезической и маркшейдерской практике, в военном деле и т.д. (см. Компас, Буссоль).
Исследование локальных магнитных аномалий позволяет обнаружить полезные ископаемые, в первую очередь железную руду (см. Магнитная разведка), а в комплексе с др. геофизическими методами разведки - определить место их залегания и запасы. Широкое распространение получил магнитотеллурический способ зондирования недр Земли, в котором по полю магнитной бури вычисляют электропроводность внутренних слоев Земли и оценивают затем существующие там давление и температуру.
Одним из источников сведений о верхних слоях атмосферы служат геомагнитные вариации. Магнитные возмущения, связанные, например, с магнитной бурей, наступают на несколько часов раньше, чем под её воздействием происходят изменения в ионосфере, нарушающие радиосвязь. Это позволяет делать магнитные прогнозы, необходимые для обеспечения бесперебойной радиосвязи (прогнозы "радиопогоды"). Геомагнитные данные служат также для прогноза радиационной обстановки в околоземном пространстве при космических полётах.
Постоянство геомагнитного поля до высот в несколько радиусов Земли используется для ориентации и маневра космических аппаратов.
Геомагнитное поле воздействует на живые организмы, растительный мир и человека. Например, в периоды магнитных бурь увеличивается количество сердечно-сосудистых заболеваний, ухудшается состояние больных, страдающих гипертонией, и т.д. Изучение характера электромагнитного воздействия на живые организмы представляет собой одно из новых и перспективных направлений биологии.
? А. Д. Шевнин.? Лит.: Яновский Б. М., Земной магнетизм, т. 1-2, Л., 1963-64; его же, Развитие работ по геомагнетизму в СССР за годы Советской власти. "Изв. АН СССР, Физика Земли", 1967, ? 11, с. 54; Справочник по переменному магнитному полю СССР, Л., 1954; Околоземное космическое пространство. Справочные данные, пер. с англ., М., 1966; Настоящее и прошлое магнитного поля Земли, М., 1965; Брагинский С. И., Об основах теории гидромагнитного динамо Земли, "Геомагнетизм и аэрономия",1967, т.7, ? 3, с. 401; Солнечно-земная физика, М., 1968.

Смотрите также: